Demystifying Gluster

GlusterFS for the SysAdmin

Dustin L. Black, RHCA
Sr. Technical Account Manager, Red Hat
2012-07-17
#whoami

- Systems and Infrastructure Geek
- Decade+ of Linux, UNIX, networking
- <notacoder/>
- Believe in Open Source **Everything**
- Sr. Technical Account Manager, Red Hat GSS
- dustin@redhat.com
#what is TAM

- Premium named-resource support
- Proactive and early access
- Regular calls and on-site engagements
- Customer advocate within Red Hat and upstream
- Multi-vendor support coordinator
- High-touch access to engineering
- Influence for software enhancements
- **NOT** Hands-on or consulting
Agenda

- Technology Overview
- A Peek at Gluster Logic
- Scaling Up and Out
- Redundancy and Fault Tolerance
- Data Access
- General Administration
- Use Cases
Technology Overview

Demystifying Gluster
GlusterFS for the SysAdmin
What is GlusterFS?

- POSIX-Compliant Distributed File System
- No Metadata Server
- Network Attached Storage (NAS)
- Heterogeneous Commodity Hardware
- Aggregated Storage and Memory
- Standards-Based – Clients, Applications, Networks
- Flexible and Agile Scaling
 - Capacity – Petabytes and beyond
 - Performance – Thousands of Clients
- Single Global Namespace
What is Red Hat Storage?

- Enterprise Implementation of GlusterFS
- Software Appliance
- Bare Metal Installation
- Built on RHEL + XFS
- Subscription Model
- Storage Software Appliance
 - Datacenter and Private Cloud Deployments
- Virtual Storage Appliance
 - Amazon Web Services Public Cloud Deployments
GlusterFS vs. Traditional Solutions

- A basic NAS has limited scalability and redundancy
- Other distributed filesystems limited by metadata
- SAN is costly & complicated but high performance & scalable
- GlusterFS
 - Linear Scaling
 - Minimal Overhead
 - High Redundancy
 - Simple and Inexpensive Deployment
Terminology

- **Brick**
 - A filesystem mountpoint
 - A unit of storage used as a GlusterFS building block
- **Translator**
 - Logic between the bits and the Global Namespace
 - Layered to provide GlusterFS functionality
- **Volume**
 - Bricks combined and passed through translators
- **Node**
 - Server running the gluster daemon and sharing volumes
Foundation Components

- Private Cloud (Datacenter)
 - Common Commodity x86_64 Servers
 - RHS: Hardware Compatibility List (HCL)
- Public Cloud
 - Amazon Web Services (AWS)
 - EC2 + EBS
Disk, LVM, and Filesystems

- Direct-Attached Storage (DAS)
- Just a Bunch Of Disks (JBOD)
- Hardware RAID
 - RHS: RAID 6 required
- Logical Volume Management (LVM)
- XFS, EXT3/4, BTRFS
 - Extended attributes support required
Data Access Overview

- Gluster Native Client
 - Filesystem in Userspace (FUSE)
- NFS
 - Built-in Service
- SMB/CIFS
 - Samba server required
Gluster Components

- **glusterd**
 - Elastic volume management daemon
 - Runs on all export servers
 - Interfaced through gluster CLI

- **glusterfsd**
 - GlusterFS brick daemon
 - One process for each brick
 - Managed by glusterd
Gluster Components

- `glusterfs`
 - NFS server daemon
 - FUSE client daemon
- `mount.glusterfs`
 - FUSE native mount tool
- `gluster`
 - Gluster Console Manager (CLI)
Putting it All Together
Scaling

Demystifying Gluster
GlusterFS for the SysAdmin
Scaling Up

- Add disks and filesystems to a node
- Expand a gluster volume by adding bricks

[Diagram of computer, hard drive, database, XFS, brick, and Gluster logo]
Scaling Out

- Add gluster nodes to trusted pool
- Add filesystems as new bricks
Under the Hood

Demystifying Gluster

GlusterFS for the SysAdmin
Elastic Hash Algorithm

- No central metadata
 - No Performance Bottleneck
 - Eliminates risk scenarios
- Location hashed intelligently on path and filename
 - Unique identifiers, similar to md5sum
- The “Elastic” Part
 - Files assigned to virtual volumes
 - Virtual volumes assigned to multiple bricks
 - Volumes easily reassigned on the fly
Translators
Distribution and Replication

Demystifying Gluster

GlusterFS for the SysAdmin
Distributed Volume

- Files “evenly” spread across bricks
- File-level RAID 0
- Server/Disk failure could be catastrophic
Replicated Volume

- Copies files to multiple bricks
- File-level RAID 1
Distributed Replicated Volume

- Distributes files across replicated bricks
- RAID 1 plus improved read performance
Geo Replication

- Asynchronous across LAN, WAN, or Internet
- Master-Slave model -- Cascading possible
- Continuous and incremental
- Time should be synchronized on all master nodes
Replicated Volumes vs Geo-replication

<table>
<thead>
<tr>
<th>Replicated Volumes</th>
<th>Geo-replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirrors data across clusters</td>
<td>Mirrors data across geographically distributed clusters</td>
</tr>
<tr>
<td>Provides high-availability</td>
<td>Ensures backing up of data for disaster recovery</td>
</tr>
<tr>
<td>Synchronous replication (each and every file operation is sent across all the bricks)</td>
<td>Asynchronous replication (checks for the changes in files periodically and syncs them on detecting differences)</td>
</tr>
</tbody>
</table>
Layered Functionality

Demystifying Gluster
GlusterFS for the SysAdmin
Striped Volumes

- Individual files split among bricks
- Similar to RAID 0
- Limited Use Cases – HPC Pre/Post Processing
Distributed Striped Volume

- Files striped across two or more nodes
- Striping plus scalability
Striped Replicated Volume

- RHS 2.0 / GlusterFS 3.3+
- Similar to RAID 10 (1+0)
Distributed Striped Replicated Volume

- GlusterFS 3.3+
- Limited Use Cases – Map Reduce
Data Access

Demystifying Gluster

GlusterFS for the SysAdmin
Gluster Native Client (FUSE)

- FUSE kernel module allows the filesystem to be built and operated entirely in userspace
- Specify mount to any GlusterFS node
- Native Client fetches volfile from mount server, then communicates directly with all nodes to access data
- Recommended for high concurrency and high write performance
NFS

- Standard NFS v3 clients
 - Mount with vers=3 option
- Standard automounter is supported
- Mount to any node, or use a load balancer
- Gluster NFS server includes Network Lock Manager (NLM) to synchronize locks across clients
- Better performance for reading many small files
SMB/CIFS

- GlusterFS volume is first redundantly mounted with the Native Client on localhost
- Native mount point is then shared via Samba
- Must be setup on each node you wish to connect to via CIFS
Preparing a Brick

```bash
# lvcreate -L 100G -n lv_brick1 vg_server1
# mkfs -t xfs -i size=512 /dev/vg_server1/lv_brick1
# mkdir /brick1
# mount /dev/vg_server1/lv_brick1 /brick1
# echo '/dev/vg_server1/lv_brick1 /brick1 xfs defaults 1 2' >> /etc/fstab
```
Adding Nodes (peers) and Volumes

```bash
gluster> peer probe server3
gluster> peer status
Number of Peers: 2

Hostname: server2
Uuid: 5e987bda-16dd-43c2-835b-08b7d55e94e5
State: Peer in Cluster (Connected)

Hostname: server3
Uuid: 1e0ca3aa-9ef7-4f66-8f15-cbc348f29ff7
State: Peer in Cluster (Connected)
```

Distributed Volume

```bash
gluster> volume create my-dist-vol server2:/brick2 server3:/brick3
gluster> volume info my-dist-vol
Volume Name: my-dist-vol
Type: Distribute
Status: Created
Number of Bricks: 2
Transport-type: tcp
Bricks:
Brick1: server2:/brick2
Brick2: server3:/brick3
gluster> volume start my-dist-vol
```
Distributed Striped Replicated Volume

```
$ gluster> volume create test-volume replica 2 stripe 2 transport tcp \
    server1:/exp1 server1:/exp2 server2:/exp3 server2:/exp4 \
    server3:/exp5 server3:/exp6 server4:/exp7 server4:/exp8

Multiple bricks of a replicate volume are present on the same server. This setup is not optimal.
Do you still want to continue creating the volume?  (y/n) y

Creation of volume test-volume has been successful. Please start the volume to access data.
```
Distributed Striped Replicated Volume

```
gluster> volume create test-volume stripe 2 replica 2 transport tcp server1:/exp1 server2:/exp3 server1:/exp2 server2:/exp4 server3:/exp5 server4:/exp7 server3:/exp6 server4:/exp8
Creation of volume test-volume has been successful. Please start the volume to access data.
```

```
gluster> volume info test-volume

Volume Name: test-volume
Type: Distributed-Striped-Replicate
Volume ID: 8f8b8b59-d1a1-42fe-ae05-abe2537d0e2d
Status: Created
Number of Bricks: 2 x 2 x 2 = 8
Transport-type: tcp
Bricks:
  Brick1: server1:/exp1
  Brick2: server2:/exp3
  Brick3: server1:/exp2
  Brick4: server2:/exp4
  Brick5: server3:/exp5
  Brick6: server4:/exp7
  Brick7: server3:/exp6
  Brick8: server4:/exp8
```
Manipulating Bricks in a Volume

```
gluster> volume add-brick my-dist-vol server4:/brick4

gluster> volume remove-brick my-dist-vol server2:/brick2 start
gluster> volume remove-brick my-dist-vol server2:/brick2 status

<table>
<thead>
<tr>
<th>Node</th>
<th>Rebalanced-Files</th>
<th>size</th>
<th>scanned</th>
<th>failures</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>localhost</td>
<td>16</td>
<td>16777216</td>
<td>52</td>
<td>0</td>
<td>in progress</td>
</tr>
<tr>
<td>192.168.1.1</td>
<td>13</td>
<td>16723211</td>
<td>47</td>
<td>0</td>
<td>in progress</td>
</tr>
</tbody>
</table>

gluster> volume remove-brick my-dist-vol server2:/brick2 commit

gluster> volume rebalance my-dist-vol fix-layout start

gluster> volume rebalance my-dist-vol start

```

```
gluster> volume rebalance my-dist-vol status

<table>
<thead>
<tr>
<th>Node</th>
<th>Rebalanced-files</th>
<th>size</th>
<th>scanned</th>
<th>failures</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>localhost</td>
<td>112</td>
<td>15674</td>
<td>170</td>
<td>0</td>
<td>completed</td>
</tr>
<tr>
<td>10.16.156.72</td>
<td>140</td>
<td>3423</td>
<td>321</td>
<td>2</td>
<td>completed</td>
</tr>
</tbody>
</table>
```
Migrating Data / Replacing Bricks

```
    gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 start
    gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 status
    Current File = /usr/src/linux-headers-2.6.31-14/block/Makefile
    Number of files migrated = 10567
    Migration complete
    gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 commit
```
Volume Options

Auth

```bash
gluster> volume set my-dist-vol auth.allow 192.168.1.*
gluster> volume set my-dist-vol auth.reject 10.*
```

NFS

```bash
gluster> volume set my-dist-vol nfs.volume-access read-only
gluster> volume set my-dist-vol nfs.disable on
```

Other advanced options

```bash
gluster> volume set my-dist-vol features.read-only on
gluster> volume set my-dist-vol performance.cache-size 67108864
```
Volume Top Command

```
gluster> volume top my-dist-vol read brick server3:/brick3 list-cnt 3
Brick: server:/export/dir1
       ===========Read file stats===========
read call count          filename
116      64               /clients/client0/~dmtmp/SEED/LARGE.FIL
116      64               /clients/client0/~dmtmp/SEED/MEDIUM.FIL
116      54               /clients/client2/~dmtmp/SEED/LARGE.FIL
```

- Many top commands are available for analysis of files, directories, and bricks
- Read and write performance test commands available
 - Perform active dd tests and measure throughput
Volume Profiling

gluster> volume profile my-dist-vol start

gluster> volume profile my-dist-vol info

Brick: Test:/export/2
Cumulative Stats:

<table>
<thead>
<tr>
<th>Block Size</th>
<th>1b+</th>
<th>32b+</th>
<th>64b+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Write:</td>
<td>908</td>
<td>28</td>
<td>8</td>
</tr>
</tbody>
</table>

...

| %-latency Avg-latency Min-Latency Max-Latency calls Fop |
|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 4.82 | 1132.28 | 21.00 | 800970.00 | 4575 | WRITE |
| 5.70 | 156.47 | 9.00 | 665085.00 | 39163 | READDIRP |
| 11.35 | 315.02 | 9.00 | 1433947.00 | 38698 | LOOKUP |
| 11.88 | 1729.34 | 21.00 | 2569638.00 | 7382 | FXATTROP |
| 47.35 | 104235.02 | 2485.00 | 7789367.00 | 488 | FSYNC |

Duration : 335
BytesRead : 94505058
BytesWritten : 195571980
Geo-Replication

Remote GlusterFS Volume

```
# gluster> volume geo-replication my-dist-vol slavehost1:my-dist-repl start
Starting geo-replication session between my-dist-vol & slavehost1:my-dist-repl has been successful
# gluster> volume geo-replication my-dist-vol status
MASTER SLAVE STATUS
my-dist-vol gluster://slavehost1:my-dist-repl OK
```

Remote SSH

```
# ssh-keygen -f /var/lib/glusterd/geo-replication/secret.pem
# ssh-copy-id -i /var/lib/glusterd/geo-replication/secret.pem repluser@slavehost1

gluster> volume geo-replication my-dist-vol repluser@slavehost1:/repl_dir start
Starting geo-replication session between my-dist-vol & slavehost1:/repl_dir has been successful

gluster> volume geo-replication my-dist-vol status
MASTER SLAVE STATUS
my-dist-vol ssh://repluser@slavehost1:/repl_dir OK
```

gluster> volume info my-dist-vol
... Options Reconfigured:
geo-replication.indexing: on
Use Cases

Demystifying Gluster

GlusterFS for the SysAdmin
Common Solutions

- Media / Content Distribution Network (CDN)
- Backup / Archive / Disaster Recovery (DR)
- Large Scale File Server
- Home directories
- High Performance Computing (HPC)
- Infrastructure as a Service (IaaS) storage layer
Hadoop – Map Reduce

- Access data within and outside of Hadoop
- No HDFS name node single point of failure / bottleneck
- Seamless replacement for HDFS
- Scales with the massive growth of big data
CIC Electronic Signature Solutions
Hybrid Cloud: Electronic Signature Solutions

- **Challenge**
 - Must leverage economics of the cloud
 - Storage performance in the cloud too slow
 - Need to meet demanding client SLA’s

- **Solution**
 - Red Hat Storage Software Appliance
 - Amazon EC2 and Elastic Block Storage (EBS)

- **Benefits**
 - Faster development and delivery of new products
 - SLA’s met with headroom to spare
 - Accelerated cloud migration
 - Scale-out for rapid and simple expansion
 - Data is highly available for 24/7 client access

- Reduced time-to-market for new products
- Meeting all client SLAs
- Accelerating move to the cloud
Pandora Internet Radio
Private Cloud: Media Serving

• **Challenge**
 • Explosive user & title growth
 • As many as 12 file formats for each song
 • ‘Hot’ content and long tail

• **Solution**
 • Three data centers, each with a six-node GlusterFS cluster
 • Replication for high availability
 • 250+ TB total capacity

• **Benefits**
 • Easily scale capacity
 • Centralized management; one administrator to manage day-to-day operations
 • No changes to application
 • Higher reliability

• 1.2 PB of audio served per week
• 13 million files
• Over 50 GB/sec peak traffic
Brightcove
Private Cloud: Media Serving

- **Challenge**
 - Explosive customer & title growth
 - Massive video in multiple locations
 - Costs rising, esp. with HD formats

- **Solution**
 - Complete scale-out based on commodity DAS/JBOD and GlusterFS
 - Replication for high availability
 - 1PB total capacity

- **Benefits**
 - Easily scale capacity
 - Centralized management; one administrator to manage day-to-day operations
 - Higher reliability
 - Path to multi-site

- Over 1 PB currently in Gluster
- Separate 4 PB project in the works
Pattern Energy
High Performance Computing for Weather Prediction

- **Challenge**
 - Need to deliver rapid advance weather predictions
 - Identify wind and solar abundance in advance
 - More effectively perform preventative maintenance and repair

- **Solution**
 - 32 HP compute nodes
 - Red Hat SSA for high throughput and availability
 - 20TB+ total capacity

- **Benefits**
 - Predicts solar and wind patterns 3 to 5 days in advance
 - Maximize energy production and repair times
 - Avoid costs of outsourcing weather predictions
 - Solution has paid for itself many times over
Thank You!

- dustin@redhat.com
- storage-sales@redhat.com
- RHS: www.redhat.com/storage/
- GlusterFS: www.gluster.org
- TAM: access.redhat.com/support/offerings/tam/

Demystifying Gluster
GlusterFS for the SysAdmin