NASA GMAT
Space Mission Design for Everyone

Joel J. K. Parker
j.parker@nasa.gov

Navigation and Mission Design Branch
NASA Goddard Space Flight Center

OSCON 2011
Overview

Mission Design
 What is it?
 How do we do it?

GMAT
 Features
 Demos
 Getting Started

The Bigger Picture
Overview

Mission Design
 What is it?
 How do we do it?

GMAT
 Features
 Demos
 Getting Started

The Bigger Picture

Why are we here?
To tell you what we’re doing, and to let you tell us how to do it better.
Mission Design: What is it?

Intuitively, mission design answers the question:

How do we get from point A to point B (in space)?

Mathematically, it solves the equation:

\[F = ma \]

Usually there are many possible answers. We want to find the one that is:

Fastest;
Mission Design: What is it?

Intuitively, mission design answers the question:

How do we get from point A to point B (in space)?

Mathematically, it solves the equation:

\[F = ma \]

Usually there are many possible answers. We want to find the one that is:

Fastest; Cheapest;
Mission Design: What is it?

Intuitively, mission design answers the question:

How do we get from point A to point B (in space)?

Mathematically, it solves the equation:

\[F = ma \]

Usually there are many possible answers. We want to find the one that is:

Fastest; Cheapest; Safest;
Mission Design: What is it?

Intuitively, mission design answers the question:

How do we get from point A to point B (in space)?

Mathematically, it solves the equation:

\[F = ma \]

Usually there are many possible answers. We want to find the one that is:

Fastest; Cheapest; Safest; Best
Mission Design’s Greatest Hits

Apollo

free-return trajectory
Mission Design’s Greatest Hits

Cassini

gravity assists
Mission Design’s Greatest Hits

SMART-1

low thrust
Mission Design: How do we do it?

With lots of math.

\[F = ma \]

Forces: simple gravity, non-spherical gravity, third-body gravity, solar radiation pressure, atmospheric drag, propulsion, general relativity

Algorithms: numerical integration, differential correction, optimization

Infrastructure: coordinate systems, time systems, state representations, physical constants, file formats, graphics
Mission Design: How do we do it?

And lots of software.

- STK
- FreeFlyer
- MATLAB
- Copernicus, Pyxis, MALTO, SPICE, CHEBYTOP, VARITOP, OTIS, Mystic, SBC, LTOC, MAnE, ...
- Self-written tools in Perl, Python, C/C++, VB, Java, ...
The Problem

Last year the Navigation and Mission Design Branch (size: 33 engineers) spent $800k on software licenses alone.

Software that we can’t examine, modify, debug, or learn from.
GMAT: The General Mission Analysis Tool

- Cross-platform desktop application (Windows, Mac, Linux)
- Domain-specific scripting language
- Written in C++ with wxWidgets
- Extensive force models, differential corrector, optimizers, estimators
- Graphics: 3D OpenGL, 2D plotting, 2D mapping
- Extensible via plugins, native functions, MATLAB functions
- Automation via C, TCP/IP, MATLAB
Major Features

- Developed by a team of private industry and NASA civil servants, led by Goddard Space Flight Center
- Contributions from NASA centers, other agencies, academia, industry, international users
- Open source, released under NASA Open Source Agreement (NOSA)
- Developed in public on SourceForge
Demos

Demo 1: ISS Simulation

Demo 2: OSIRIS-REx Design
Now Try it Yourself

GMAT ships with nearly 40 example mission scripts:

- Geostationary
- LCROSS
- MMS
- Mars transfer
- Lunar transfer
- Libration points

These and more are available on our wiki:
gmat.ed-pages.com/wiki/MissionLibrary
How do I get started?

Download the app:
sf.net/projects/gmat

Read through the docs:
gmat.sf.net/docs

Check out the wiki:
gmat.ed-pages.com/wiki

Ask on the forum:
gmat.ed-pages.com/forum

Follow the blog:
gmat.sf.net/blog
How can I help?

For experts...

- Look through our algorithms, math spec, design documents
- Recreate an interesting mission and post it to our library

If you can code...

- Help improve code quality
- Submit, verify, and quash bugs
- Follow our dev blog: gmatplugins.sf.net/blog

If you care about what we’re doing and just want to help...

- Hang out on the wiki and forum
- Help improve our documentation
- Share with your friends

Now, the bigger picture...

NASA has a history of supporting open source.

- NASA Open Source Agreement (NOSA)
- WorldWind: over 20 million downloads since 2005
- opensource.gsfc.nasa.gov (46 registered projects)
- opensource.arc.nasa.gov (23 registered projects)
- 2011 NASA Open Source Summit

nasa.gov/open
Thank you