O'REILLY O'R

Advance Replication Monitoring

Gerardo "Gerry" Narvaja @seattlegaucho

Agenda

- Short Introduction
 - Make sure we all speak the same language
- Scenarios
 - What can go wrong and why it may be OK
- What To Look For / At
 - What the variables mean
 - Some pretty pictures
- Conclusion

Introduction

What happens in the master ...

• ... in the slave it becomes ...

- Replication is single-threaded
 - IO Thread + SQL Thread
 - No contention in the slave, it should run faster

Most Basic Monitoring

- SHOW SLAVE STATUS
 - IO Thread
 - Usually flags communication issues
 - SQL Thread
 - Usually flags data related issues
- Application code
 - Maatkit: mk-heartbeat
 - Simple monitoring can be implemented at the shell
 - Implement your own heartbeat table
 - Can be used to measure quality of data on the slaves
- If you don't have this basic monitoring in place, is like taking backups and not testing restores.

Replication Status

SHOW SLAVE STATUS\G

Seconds Behind Master

What happens when storing BLOBs and loading them in batches

- SBC is based on the timestamp for the transaction
 - You can get *crazy* values based on the actual traffic
 - Is this a bad situation?
 - How do master_log_file and read_master_log_pos look like?

Bytes Behind Master

- Not provided directly
 - On the master: SHOW MASTER STATUS, SHOW BINARY LOGS

show master status; show binary logs;									
File	Position	Binlog_Do_DB	Binlog_Ignore_DB						
mysql-bin.009734	153545495								
		·	++						
Log_name 	 File_size 	-+ -+							
mysql-bin.009730 mysql-bin.009731 mysql-bin.009732 mysql-bin.009733 mysql-bin.009734 +	1073764076 1073772807 1073761932 1073756776 153545495	 							

- On the slave: SHOW SLAVE STATUS
- Challenges
 - Not easy way to get information from the master, but only need past files info
 - Master position is a moving target
 - ROW vs STATEMENT vs MIXED replication
 - Example: Data purges → DELETE ... FROM table WHERE ...

Replication Capacity Index

- Based on Estimating Replication Capacity blog by Percona
 - Estimate the capacity of the slave to keep up with the master load
- Some bash scripts and real data
 - #!/bin/bash
 # Test RCI (Replication Capacity Index)
 echo "\$(date +%Y%m%d-%H%M%S) Starting test"
 mysql -e "stop slave"
 sleep 600
 mysql -e "start slave"
 - while true; do
 echo \$(date +%Y%m%d-%H%M%S) `mysql -e "show slave status\G" | grep -i seconds` >> test.log
 sleep 10
 done

RCI (cont)

(CONT.)

- 20100729-205134 - Seconds_Behind_Master: 0

20100729-205140 - Starting test --> Thitial timestamp

20100729-205144 - Seconds_Behind_Master: NULL

. . .

20100729-210134 - Seconds_Behind_Master: NULL

20100729-210144 - Seconds_Behind_Master: 161

20100729-210154 - Seconds_Behind_Master: 0 --> Last timestamp

	Pause	Start TS	1st TS	SBM	2nd TS	Diff 1	Diff 2	RCI
044	00:10:00	20:51:40	21:01:44	161	21:01:54	00:10:04	00:10:14	43.9
045	00:10:00	17:32:13	17:42:17	320	17:42:27	00:10:04	00:10:14	43.9
005	00:10:00	15:37:12	15:47:21	441	15:47:41	00:10:09	00:10:29	21.7
001	00:10:00	18:54:28	19:04:33	520	19:04:53	00:10:05	00:10:25	25.0
002	00:10:00	18:02:32	18:12:39	389	18:12:49	00:10:07	00:10:17	36.3

RCI (cont)

- Revisiting the replication delay chart
 - Lt: Time while replication falls behind
 - Rt: Time it takes for replication to catch up
 - RCI = Rt/Lt

Replication Heartbeat

- Using Maatkit's mk-heartbeat
 - Run on the active master with -update option
 - Run on the slaves with -monitor or -check option
 - Output similar to Linux' uptime

```
mk-heartbeat --monitor --host localhost --database maatkit 18s [ 2.85s, 0.57s, 0.19s ] 19s [ 3.17s, 0.63s, 0.21s ] 20s [ 3.50s, 0.70s, 0.23s ] 18s [ 3.80s, 0.76s, 0.25s ] 16s [ 4.07s, 0.81s, 0.27s ]
```

- Issues
 - Highly sensitive to clocks in the master and slave(s) being in sync
 - It has to run on the active master in master-to-master setups
 - Better than seconds behind master

How To Monitor?

- There is no silver bullet
 - Avoid noise alerts
- Know your monitoring system
 - Tools: OpenNMS (SNMP), MONyog, MySQL Enterprise, home grown
 - Don't rely on just one
- Alarms
 - Thresholds and hysteresis
 - Number of incidents until it alarms
 - Sampling intervals
- Know your load
 - Low / High traffic? Bursts?
 - Small / big transactions? Concurrency?
- Replication type
 - Row / Statement / Mixed

Thank you very much