
<Insert Picture Here>

What's new in MySQL 5.5? Performance/Scale Unleashed

Mikael Ronström
Senior MySQL Architect



The preceding is intended to outline our general 
product direction. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be 
relied upon in making purchasing decisions.
The development, release, and timing of any 
features or functionality described for Oracle’s 
products remains at the sole discretion of Oracle.



Outline

• Scalability Improvements
• Scalability bottlenecks and their elimination in MySQL 

Server
• Scalability bottlenecks and their elimination in InnoDB
• Recovery improvements in InnoDB
• Impact of solutions



Multi-Core CPU Development

• Intel recently released 8-core CPU's with 2 threads 
per core, 2-socket and 4-socket solutions with this 
CPU will be common and even 8+ sockets will be 
available

• AMD recently released a 12-core CPU available in 2, 
4 and 8 socket servers



OLTP RW Less Read

4-core 8-core 12-core 16-core

0

2000

4000

6000

8000

10000

12000

MySQL 5.1
MySQL 5.5.3-m3
MySQL 5.5.4-m3



Scalability bottlenecks in MySQL Server in MySQL 
5.1

• LOCK_open mutex (main bottleneck for Read-Only 
workloads)

• LOCK_alarm mutex
• LOCK_thread_count
• LOCK_grant (protects GRANT tables)
• THR_LOCK_lock (used for TABLE lock handling)
• THR_LOCK_charset
• Query cache mutexes + Binlog mutexes



LOCK_open mutex in MySQL 5.1 (1)

• In normal query workloads LOCK_open is used in 
open_table and close_open_tables

• Protects refresh_version (incremented through 
FLUSH TABLE)

• Held while calculating hash value for table name
• Held while searching for a free TABLE object in cache 

of open_tables
• Held while searching for TABLE objects to free due to 

too many TABLE objects in cache
• Held while opening table from FRM file if needed
• Held while creating new TABLE object if needed



LOCK_open in MySQL 5.1 (2)

• Held while putting back TABLE object to free list
• Held while resetting Handler object
• Held while releasing BLOB objects allocated in query
• Held while freeing TABLE objects



LOCK_open in MySQL 5.5 (1)

• New subsystem MDL (MetaData Locking) introduced 
in MySQL 5.5

• MDL has hash from table name to table MDL lock 
object

• MDL lock object contains cached TABLE_SHARE 
object

• TABLE_SHARE object has list of free TABLE objects 
and list of used TABLE objects



LOCK_open in MySQL 5.5 (2)

• MDL hash protected by mutex, hash function 
executed outside of mutex, easy to split into multiple 
hashes in future versions

• MDL table lock object protected by separate mutex
• refresh_version now atomic variable outside of 

LOCK_open
• Removed release of BLOB memory from LOCK_open
• Removed reset of Handler object from LOCK_open
• Removed hash tables from LOCK_open (moved to 

MDL hash mutex)



LOCK_open in MySQL 5.5 (3)

• Removed search for free object on TABLE_SHARE, now 
separate free list and used lists (this is one of the reasons 
of worsening performance of Read-Only workloads with 
increasing number of connections in MySQL 5.1)

• Creation of TABLE object from TABLE_SHARE no longer 
protected by LOCK_open => Handler::open not protected 
by LOCK_open (reported as an issue since InnoDB grabs 
its kernel_mutex here)

• Creation of TABLE_SHARE from FRM file still under 
LOCK_open protection, work is ongoing to fix this as well 
(usually avoided by ensuring config is properly set)



LOCK_open split into MDL hash, MDL lock, 
LOCK_open, atomic refresh_version

• So effectively we have split LOCK_open mutex into 3 
mutexes + an atomic variable

• All these mutexes are acquired and released one at a 
time

• Special ”tricks” needed to separate MDL hash from 
MDL table lock object



Special trick for separation of MDL hash mutex 
and MDL table lock mutex (1)

• MDL hash mutex held when inserting, deleting and 
searching in MDL hash

• MDL table lock object is the objects found in MDL 
hash

• MDL hash search retrieves MDL table lock object
• MDL table lock object can be deleted
• Two reference counters, one incremented when read 

from hash (protected by MDL hash mutex), one 
incremented when acquired MDL table lock mutex 
(protected by this mutex)



Special trick for separation of MDL hash mutex 
and MDL table lock mutex (1)

• When deleting both mutexes are held, ok to delete if 
both reference counters have same value, otherwise 
delete_flag is set

• When acquiring MDL table lock mutex check if 
delete_flag is set, if set, delete object and retry search 
in hash table



LOCK_alarm mutex

• Protects alarm handling which is used by MySQL in 
network handling

• Removed on platforms that support SO_SNDTIME0 
and SO_RCVTIME0 (timeouts on socket reads) => no 
alarm handling needed for socket reads



LOCK_thread_count in MySQL 5.1 => MySQL 5.5

• Protects list of connections
• Protects global Query Id variable
• Protects global count of Running Threads
• Global Query Id variable made atomic variable
• #Running Threads made atomic variable
• Makes LOCK_thread_count mostly used at 

connect/disconnect and various SHOW commands, 
previously used 1-2 times per query



THR_LOCK_charset mutex

• In some cases in MySQL 5.1 this mutex was held 
unnecessarily during normal charset set-up for 
various charsets

• Removing this unnecessary mutex lock/unlock had 
dramatic effect on effected workloads



Scalability bottlenecks in MySQL 5.5

• LOCK_open mutex
• MDL hash mutex
• The above two are still the main MySQL bottlenecks 

although now much less of a bottleneck, can fairly 
easily be split into different mutexes for different 
tables

• MDL table lock mutex
• LOCK_grant (RW-lock almost always using R-lock, 

can be fixed by Read-lock optimized RW-locks)
• THR_LOCK_lock
• Query cache mutexes + Binlog mutexes



Scalability Bottlenecks in MySQL 5.1/InnoDB 1.0.6

• Buffer Pool mutex (Very hot mutex)
• Rollback Segment Mutex (Hot mutex)
• Log Mutex (Very hot mutex)
• Index RW-lock (Hot in some cases)
• Dictionary Mutex (Hot in some cases)
• Block mutex (1 per page) (can be hot for some pages)
• Page RW-lock (1 per page)
• Kernel Mutex (gets hot as number of trx's increase)
• InnoDB Thread Concurrency Mutex (can be shut off)
• Adaptive Hash Mutex (can be shut off)



InnoDB Mutex analysis on Sysbench RW using 
InnoDB 1.0.6

• Log Mutex acquired around 350k/sec, held about 75% 
of time

• Buffer Pool mutex acquired around 700k/sec, held 
about 50% of time

• Rollback Segment Mutex acquired around 20k/sec, 
held about 25% of time



Log Mutex Analysis

• Protects Log Data Struct (LSN number and other Log 
related data)

• Protects Log Memory Buffer
• Protects Writing of Mini-transactions to buffer pages 

(updates LSN number of pages among other things)



Log Mutex Analysis (2)

• Activity to write to buffer pages is completely 
independent of the rest of the log mutex activity

• However it is necessary to ensure that the buffer 
pages are updated in LSN order

• To handle this we introduce a new mutex 
log_flush_order mutex which is taken before writing to 
the buffer pages, it is taken while still holding the log 
mutex to maintain LSN order, immediately after 
acquiring it we release the log mutex



Log Mutex Analysis (3)

• Split of Log Mutex has the advantage that the Log 
Mutex and the Buffer Pool mutex are separated from 
each other

• To have to acquire the hot buffer pool mutex while 
holding the hot log mutex isn't a good idea, so this 
design removes this need



Buffer Pool Mutex Analysis

• Buffer Pool mutex protects many data structures in 
the Buffer Pool: LRU, Flush List, Free List, Page Hash 
Table

• To decrease pressure of the buffer pool there are 
essentially two ways:

• 1) Split the buffer pool mutex and have different 
mutexes protect different parts of the buffer pool, e.g. 
one mutex to protect LRU, another to protect Flush 
List and another to protect Page Hash

• 2) Split the buffer pool into multiple instances, each 
buffer pool with its own buffer pool mutex



Buffer Pool Mutex Analysis (2)

• I did a lot of analysis of splitting out the Flush List 
from the buffer pool and splitting out the page hash 
from the buffer pool

• The results were very promising in the context of the 
“old” InnoDB, but the introduction of compressed 
pages into the buffer pool in the InnoDB plugin made 
it very hard to get good results using these versions 
due to too many cases of having to hold multiple 
buffer pool mutexes



Buffer Pool Mutex Analysis (3)

• To access a page within a buffer pool requires 3 locks 
to be taken, the buffer pool mutex, the block mutex 
and the Page RW-lock.

• Introducing a Page Hash mutex requires yet one 
more mutex to be acquired as part of accessing a 
page, the buffer pool and page hash mutex are 
possible to separate but increasing number of 
mutexes to acquire also increases code pathlength in 
a critical part of the system



Buffer Pool Mutex Analysis (4)

• So effectively to split the buffer pool into multiple 
buffer pool instances makes a whole lot of sense

• Analysing this split it turned out that we could avoid 
holding more than one buffer pool mutex instance in 
all query execution code, only in some code executed 
rarely was it necessary to hold all mutexes at the 
same time



Buffer Pool Mutex Analysis (5)

• Benchmarks showed that the major performance 
enhancements was realised by either splitting out an 
array of page hash mutexes or by splitting the buffer 
pool into multiple instances

• The best results came by splitting the buffer pool into 
multiple instances

• Also multiple buffer pools is very likely to be better in 
situations with high IO load on the system

• A configurable number of buffer pool instances means 
we can tune the system for optimum number of 
instances as well



Buffer Pool Mutex Analysis (6)

• To further the decoupling of the log subsystem from 
the buffer subsystem we also split out the Flush List 
from the buffer pool mutex, to ensure that while 
holding the new log_buf mutex we need not hold the 
still fairly hot buffer pool mutex

• “hot”-ness of buffer pool mutex instances is very 
different, accesses to pages in a database is rarely 
fair, in particular root pages in indexes cause fairly 
high variance



Rollback Segment Mutex Analysis

• Accessing the rollback segment mutex is one of the 
main cause of degrading performance with many 
connections (together with kernel mutex and 
LOCK_open in MySQL 5.1)

• As the number of updates to a record by different 
transactions increases, the path to get to the proper 
record increases

• To get to the proper record is protected to some 
extent by the rollback segment and can even at times 
include IO while holding this mutex

• Mutex analysis shows the variance of hold times of 
this mutex to be very high and hold times are also 
very high



Rollback Segment Mutex Analysis (2)

• The hold times of this mutex effectively means that it 
doesn't really fit the InnoDB mutex implementation 
which is more geared towards mutexes like the buffer 
pool mutex with very short duration and many 
concurrent accesses to it

• However it is possible to split this mutex, and so have 
been done, it's now 128 mutexes

• This removes this mutex from the picture
• It is possible to reuse old InnoDB installations even 

with this split of rollback segments



InnoDB Purge Activity

• Purge activity comes about as support for consistent 
reads requires old records to be kept in data and 
indexes until no transaction will anymore access them

• Previously purge activity was performed as part of 
master thread

• Higher transaction rates means that quite a lot of 
energy needs to be spent on purging

• Thus master thread can be blocked to execute only 
purge activities for a long time

• This leads to master thread not properly flushing dirty 
pages, not doing checkpoints regularly as it should



InnoDB Purge Activity (2)

• When master thread isn't taking care of flushing dirty 
pages regularly eventually the execution threads will 
take over this task

• This will drastically lower performance for a short time 
until flushing is under control again

• So the problem with master thread leads to very high 
variance in throughput



InnoDB Purge Activity (3)

• Solution is to separate Purge activity into its own 
thread

• This means that master thread will always properly 
handle flush activities and checkpointing activities

• This will lead to steady performance
• Separation of purge into its own thread can lead to 

short-term performance to be lower since avoiding 
purging means higher performance for a short time, 
but if situation persists the purge is needed and can 
then kill performance of the MySQL Server



InnoDB Recovery (in 1.0.7 and in MySQL 5.5.4-m3)

• Phase 1: Redo Log Scan
• Phase 2: Redo Log application
• Phase 3: Rollback of uncommitted trx's
• Redo Log Scan contained operation to calculate size 

of heap which was made O(1) from O(n)
• Redo Log application improved insert into buffer pool 

flush list by changing from linear search to binary 
search => O(n*n) changed to O(n*log n)

• Standard sysbench recovery improved from 7 hours 
to 14 minutes



Extending Change Buffering to also support 
Delete + Purges

• Buffers deletes and purges and perform those in 
background

• For Delete only benchmark on IO bound workload the 
delete rate can increase from 50/sec to 8000/sec



dbStress scalability 1 thread per core 12->32 cores

12-cores 16-cores 24-cores 32-cores

0

5000

10000

15000

20000

25000

30000

35000

RO
RW



Thank you for your attention

Questions?

Welcome to the next session where we will present 
more detailed benchmark results


	Title of Presentation
	Slide 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38

