An Overview of Flash Storage for Databases

Vadim Tkachenko
Morgan Tocker
http://percona.com

MySQL CE
Apr 2010
Introduction

• Vadim Tkachenko
 – Percona Inc, CTO and Lead of Development

• Morgan Tocker
 – Percona Inc, Director of Training
What is talk about

- Flash technologies
 - Server usage
 - not USB/digital camera flash cards
- FusionIO and Intel SSD
- Database (MySQL) application
- Flash changes performance landscape
 - Talk gives basic background what to look into
Revolutionary

• Change in technology
 – From spinning to solid state
 • No mechanical moving parts
 – Jump in performance
 – Requires changes in applications
 – My prediction: in 5-10 years it will replace hard disks totally
Physics behind

• “floating gate transistors”
 – Non-volatile memory
 – (more details)
• One state – Single Level Cell (SLC)
 – Faster, more reliable, more expensive
• Many states – Multi Level Cell (MLC)
 – Usually 4 states
 – Slower, less reliable, cheaper
Classification

- **NOR**
 - Random read access (bit granularity)
 - Speed compared with DRAM
 - Slow write and erase
 - Firmware storage

- **NAND (this talk about)**
 - Faster writes
 - Only block-level read access (4K)
 - Idea is to compact many cells in limited space
 - Make competition with Hard Disk Drives
Erasing (NAND)

- Erase is to set all bits to “1111…”
 - Erasing process is similar to “flash” in photocameras – there where name FLASH comes from
 - Erase is slow, done in batch operation (up to 1MB)
- Change “1”->”0” is fast
- Change “0”->”1” is possible only by erasing
 - 1st write: “1111” -> “1110”. Block marked as “written”
 - 2nd write: even “1110” -> “1010” is not possible
 - Smart software could detect it
Erase challenges

• Erase is slow
 – You want to erase many blocks in single flash
 – Block management
• When you write – card never writes the same block
• Background process to run garbage collector
Erasing lifetime

- **SLC**
 - 100,000 times per cell (may vary)
- **MLC**
 - 10,000 times per cell (may vary)
- Many cell and even distribution (wear leveling) make it couple years under heavy write load
Write degradation

• Expected, steady state
 – Graph for FusionIO 320GB MLC card
Soft(firm)ware matters

• Complexity of erasing process make software logic really important
FusionIO
Intel SSD
FusionIO

An Overview of Flash Storage for Databases
FusionIO performance

- Data from specification:
 - 160 GB SLC card
 - 116K read IOS (4K)
 - 26µs read latency
 - 320 GB MLC card
 - 71K read IOS
 - 41µs read latency
 - Lifetime:
 - SLC flash @ 40% write duty | 25 calendar years
 - MLC flash @ 20% write duty | 10 calendar years
 - MLC flash @ 40% write duty | 5 calendar years
FusionIO overview

- Fast. Very fast.
- PCI-E, closest to CPU
- MLC / SLC / Duo Cards
- “Transactiona” log – durability
- Shares host memory / CPU
- Most complex part – firmware
- Space reservation for heavy writes
FusionIO drawbacks

- Expensive: 50$/GB (effective space)
 - Requires 25% space reservation
 - Regular DRAM – 30-40$/GB
 - 320 GB MLC PCIe ioDrive $6,829.99 (dell.com)

- PCI-E: not “hot-swap”
 - PCI-E errors
 - FusionIO takes care about it
FusionIO - durability

- Cache is located in host system
- “transactional” log

- Crash recovery
- No data loss in case power / system failure
FusionIO read performance

160GB SLC card
8 threads: 33K IOS (525MB/sec), 0.28 ms 95% response time

RAID10 is
Dell Perc 6i RAID10 on
8 disks 2.5” 15K RPM SAS
FusionIO write performance

8 threads: 20K IOS (314MB/sec), 0.26 ms 95% response time
FusionIO – for database

• Many read / write threads to utilize full throughput
• MySQL is not able to load it fully
 – XtraDB / InnoDB-plugin has multi-io threads
• InnoDB IO path has to be re-implemented
Intel SSD
Intel SSD

- SATA form factor
- Intel X25-M Gen I (50nm) & Gen II (35nm)
 - MLC
 - “... High-performance storage for notebook and desktop PCs…” - intel.com
- Intel X25-E (50nm)
 - SLC
 - “Enterprise”
 - “... Extreme performance and reliability for servers, storage, and workstations.…” - intel.com
X25-E

- 32GB / 64GB
- Throughput: 35K IOS reads, 3.5K IOS writes
- Latency: 75 µs reads, 85 µs writes
- 64 GB - $725.00
 - 11$/GB
- Write Endurance:
 - 1 petabyte of random writes (32 GB)
 - 2 petabyte of random writes (64 GB)
- Roadmap:
 - 128GB ? Replace SLC->MLC ?
X25-M Gen II

- 80 GB / 160 GB
- Throughput: 35K IOS reads, 6.5 / 8.5K IOS writes
- Latency: 65 µs reads, 85 µs writes
- 160GB – 500$
 - 3.12$ / GB
- Write Endurance
 - Not mentioned in official specification
X25-E challenges

- Write cache is not battery backup
 - Loss of transactions
- Disabling write cache is performance hit
- No clear roadmap
Benchmarks – random read

- X25-E, 8 threads: 9K IOS (140 MB/s), 1.04 ms
Random write

1 thread – 5.6K IOS, 0.17ms
8 threads – 2.5K IOS, 2.3ms
Write cache

An Overview of Flash Storage for Databases
X25 deployment

• Couple cards are giving problem
• RAID
 – Software / hardware ?
 • Hardware throughput is limited to 4 cards
 – Level 0? 1 ? 10? 5? 50 ?
• Engineering process could be complex and expensive
 – Ready solutions: Schooner, Gear6, Cisco servers
MySQL specific

- SSD is very good at random reads, good at random writes, not so good at sequential writes, compared to HDD
 - http://yoshinorimatsunobu.blogspot.com/2009/05/tables-on-ssd-redobinlogsystem.html

- Data files – SSD
 - Table files (*.ibd)
 - UNDO segments (ibdata)

- Log files – RAID with BBU
 - REDO log files (ib_logfile*)
 - Binary log files (binlog.XXXXXX)
 - Doublewrite buffer (ibdata)
 - Insert buffer (ibdata)
 - Slow query logs, error logs, general query logs, etc

- **SSD Deployment Strategies for MySQL**, 2:00pm Thursday, 04/15/2010
 - By [Yoshinori Matsunobu](http://www.sun.com) (Sun Microsystems)
Performance overview

An Overview of Flash Storage for Databases
Tpcc-like benchmarks

- RAID10 – 7439.850 TPM / 4.8 TPM / $
- SSD – 10681.050 TPM / 27 TPM / $
- FusionIO – 17372.250 TPM / 3.6 TPM / $
Others factors

- Consolidation factor
 - Replace 2x-10x servers by one
- Power consumption
Application directions

- Multi-threaded IO
- Sequential / random separation
- Hierarchical (L2) cache
 - Already available in ZFS / Veritas
Technologies to look

- FusionIO
- Seagate / LSI PCI card (end 2010 ?)
- Couple more PCI-E based
- Intel / Samsung SSD
- Schooner
 - MySQL appliance with performance customization for SSD
- Violin Memory
 - Flash as RAM
Thank you!

- Questions?
- vadim@percona.com
- morgan@percona.com